MTH 203- Quiz 4 Solutions

1. Let $R_{x, \theta} \in \operatorname{Sym}\left(\mathbb{R}^{2}\right)$ denote the counterclockwise rotation about a point $x \in \mathbb{R}^{2}$ by an angle θ.
(a) Show that $R_{x, \theta}$ is a product of two reflections in $\operatorname{Sym}\left(\mathbb{R}^{2}\right)$.
(b) Show that for rotations $R_{x_{1}, \theta_{1}}, R_{x_{2}, \theta_{2}} \in \operatorname{Sym}\left(\mathbb{R}^{2}\right)$ such that $\theta_{1}+$ $\theta_{2} \neq 2 k \pi$ for some $k \in \mathbb{Z}$, the product $R_{x_{1}, \theta_{1}} R_{x_{2}, \theta_{2}} \in \operatorname{Sym}\left(\mathbb{R}^{2}\right)$ is also a rotation.
$[4+6]$
Solution. We provide a geometric proof to (a) and (b). The formal algebraic proof is left as an exercise.
(a) It can be easily seen that the rotation $R_{x, \theta}$ is the product of reflections about the two lines ℓ_{1} and ℓ_{2} intersecting at x at an angle $\theta / 2$, as shown in Figure 1 below.

Figure 1: The rotation $R_{x, \theta}$ has a product of reflections.
(b) For $1 \leq i \leq 3$, let \mathcal{R}_{i} denote the reflection about the line ℓ_{i} shown in Figure 2 below.

Figure 2: The product of the two rotations $R_{x_{1}, \theta_{1}}$ and $R_{x_{2}, \theta_{2}}$.

From (a), we have $R_{x_{1}, \theta_{1}}=\mathcal{R}_{3} \mathcal{R}_{1}$ and $R_{x_{2}, \theta_{2}}=\mathcal{R}_{1} \mathcal{R}_{2}$. Thus, it follows that

$$
R_{x_{2}, \theta_{2}} R_{x_{1}, \theta_{1}}=\mathcal{R}_{3} \mathcal{R}_{2}=R_{x_{3}, \theta_{1}+\theta_{2}},
$$

assuming that $\theta_{1}+\theta_{2} \neq 2 k \pi$. (Verify that when $\theta_{1}+\theta_{2}=2 k \pi$, $R_{x_{2}, \theta_{2}} R_{x_{1}, \theta_{1}}$ is a translation.)
2. Let $R_{v, \theta} \in \operatorname{Sym}\left(\mathbb{R}^{3}\right)$ denote the counterclockwise rotation about a vector $v \in \mathbb{R}^{3}$ by an angle θ.
(a) For $i=1,2$, let $R_{i}=R_{v_{i}, \theta_{i}}$. Then show that $R_{2} R_{1} R_{2}^{-1}$ is a rotation about a vector in \mathbb{R}^{3}.
(b) Show that a nontrivial normal subgroup of $\mathrm{SO}(3, \mathbb{R})$ is infinite. $[4+6]$

Solution. (a) Since R_{1} fixes the vector v_{1}, we have:

$$
R_{2} R_{1} R_{2}^{-1}\left(R_{2}\left(v_{1}\right)\right)=R_{2}\left(R_{1}\left(v_{1}\right)\right)=R_{2}\left(v_{1}\right),
$$

from which it follows that $R_{2} R_{1} R_{2}^{-1}$ fixes the vector $R_{2}\left(v_{1}\right)$. Since $R_{i} \in \mathrm{SO}(3, \mathbb{R})$, it follows that $R_{2} R_{1} R_{2}^{-1} \in \mathrm{SO}(3, \mathbb{R})$ has the eigenvector $R_{2}\left(v_{1}\right)$ corresponding to the eigenvalue +1 . Thus, we know from the proof of 6.2 (ix) that $R_{2} R_{1} R_{2}^{-1}$ must be a rotation about $R_{2}\left(v_{1}\right)$ by an angle $\theta_{2}+\theta_{1}-\theta_{2}=\theta_{1}$, that is, $R_{2} R_{1} R_{2}^{-1}=R_{R_{2}\left(v_{1}\right), \theta_{1}}$.
(b) Let $H=\left\{M_{1}, \ldots, M_{n}\right\}$ be a normal subgroup of $\operatorname{SO}(3, \mathbb{R})$. Since each matrix M_{i} has 1 as eigenvalue, let its corresponding eigenvector be v_{i}. Thus, M_{i} represents a rotation in \mathbb{R}^{3} about v_{i} by θ_{i}, i.e, $M_{i}=R_{v_{i}, \theta_{i}}$. Consider an $M \in \mathrm{SO}(3, \mathbb{R})$ such that $M\left(v_{j}\right) \notin\left\{v_{1}, \ldots, v_{n}\right\}$ for some j. (Why is such a choice possible?) Then by (a), $M M_{j} M^{-1}=R_{M\left(v_{j}\right), \theta_{j}} \notin$ H, which contradicts the normality of H.

