## MTH 203 - Quiz 4 Solutions

- 1. Let  $R_{x,\theta} \in \text{Sym}(\mathbb{R}^2)$  denote the counterclockwise rotation about a point  $x \in \mathbb{R}^2$  by an angle  $\theta$ .
  - (a) Show that  $R_{x,\theta}$  is a product of two reflections in Sym( $\mathbb{R}^2$ ).
  - (b) Show that for rotations  $R_{x_1,\theta_1}, R_{x_2,\theta_2} \in \text{Sym}(\mathbb{R}^2)$  such that  $\theta_1 + \theta_2 \neq 2k\pi$  for some  $k \in \mathbb{Z}$ , the product  $R_{x_1,\theta_1}R_{x_2,\theta_2} \in \text{Sym}(\mathbb{R}^2)$  is also a rotation. [4+6]

**Solution.** We provide a geometric proof to (a) and (b). The formal algebraic proof is left as an exercise.

(a) It can be easily seen that the rotation  $R_{x,\theta}$  is the product of reflections about the two lines  $\ell_1$  and  $\ell_2$  intersecting at x at an angle  $\theta/2$ , as shown in Figure 1 below.



Figure 1: The rotation  $R_{x,\theta}$  has a product of reflections.

(b) For  $1 \leq i \leq 3$ , let  $\mathcal{R}_i$  denote the reflection about the line  $\ell_i$  shown in Figure 2 below.



Figure 2: The product of the two rotations  $R_{x_1,\theta_1}$  and  $R_{x_2,\theta_2}$ .

From (a), we have  $R_{x_1,\theta_1} = \mathcal{R}_3 \mathcal{R}_1$  and  $R_{x_2,\theta_2} = \mathcal{R}_1 \mathcal{R}_2$ . Thus, it follows that

$$R_{x_2,\theta_2}R_{x_1,\theta_1} = \mathcal{R}_3\mathcal{R}_2 = R_{x_3,\theta_1+\theta_2},$$

assuming that  $\theta_1 + \theta_2 \neq 2k\pi$ . (Verify that when  $\theta_1 + \theta_2 = 2k\pi$ ,  $R_{x_2,\theta_2}R_{x_1,\theta_1}$  is a translation.)

- 2. Let  $R_{v,\theta} \in \text{Sym}(\mathbb{R}^3)$  denote the counterclockwise rotation about a vector  $v \in \mathbb{R}^3$  by an angle  $\theta$ .
  - (a) For i = 1, 2, let  $R_i = R_{v_i, \theta_i}$ . Then show that  $R_2 R_1 R_2^{-1}$  is a rotation about a vector in  $\mathbb{R}^3$ .
  - (b) Show that a nontrivial normal subgroup of  $SO(3, \mathbb{R})$  is infinite. [4+6]

**Solution.** (a) Since  $R_1$  fixes the vector  $v_1$ , we have:

$$R_2 R_1 R_2^{-1}(R_2(v_1)) = R_2(R_1(v_1)) = R_2(v_1),$$

from which it follows that  $R_2R_1R_2^{-1}$  fixes the vector  $R_2(v_1)$ . Since  $R_i \in SO(3, \mathbb{R})$ , it follows that  $R_2R_1R_2^{-1} \in SO(3, \mathbb{R})$  has the eigenvector  $R_2(v_1)$  corresponding to the eigenvalue +1. Thus, we know from the proof of 6.2 (ix) that  $R_2R_1R_2^{-1}$  must be a rotation about  $R_2(v_1)$  by an angle  $\theta_2 + \theta_1 - \theta_2 = \theta_1$ , that is,  $R_2R_1R_2^{-1} = R_{R_2(v_1),\theta_1}$ .

(b) Let  $H = \{M_1, \ldots, M_n\}$  be a normal subgroup of SO(3,  $\mathbb{R}$ ). Since each matrix  $M_i$  has 1 as eigenvalue, let its corresponding eigenvector be  $v_i$ . Thus,  $M_i$  represents a rotation in  $\mathbb{R}^3$  about  $v_i$  by  $\theta_i$ , i.e,  $M_i = R_{v_i,\theta_i}$ . Consider an  $M \in SO(3, \mathbb{R})$  such that  $M(v_j) \notin \{v_1, \ldots, v_n\}$  for some j. (Why is such a choice possible?) Then by (a),  $MM_jM^{-1} = R_{M(v_j),\theta_j} \notin H$ , which contradicts the normality of H.